What is Neuroplasticity? A Psychologist Explains [+14 Exercises]

What is Neuroplasticity? Definition + 14 Brain Plasticity Exercises

Our brains are truly amazing, aren’t they?

Have you ever watched one of those specials on someone who experienced an amazing, unexpected recovery after a traumatic brain injury, stroke, or other brain damage? Some of those stories seem like the only explanation is magic.

Although it certainly seems inexplicable, scientists have been hard at work studying exactly these cases over the last several decades, and have found the explanation behind the magic: neuroplasticity.

 

 

What is the Meaning of Neuroplasticity?

Neuroplasticity refers to the brain’s ability to adapt. Or, as Dr. Campbell puts it:

“It refers to the physiological changes in the brain that happen as the result of our interactions with our environment. From the time the brain begins to develop in utero until the day we die, the connections among the cells in our brains reorganize in response to our changing needs. This dynamic process allows us to learn from and adapt to different experiences” – Celeste Campbell (n.d.).

Our brains are truly extraordinary; unlike computers, which are built to certain specifications and receive software updates periodically, our brains can actually receive hardware updates in addition to software updates. Different pathways form and fall dormant, are created and are discarded, according to our experiences.

When we learn something new, we create new connections between our neurons. We rewire our brains to adapt to new circumstances. This happens on a daily basis, but it’s also something that we can encourage and stimulate.

 

A Brief History of Neuroplasticity

The term “neuroplasticity” was first used by Polish neuroscientist Jerzy Konorski in 1948 to describe observed changes in neuronal structure (neurons are the cells that make up our brains), although it wasn’t widely used until the 1960s.

However, the idea goes back even farther (Demarin, Morović, & Béne, 2014)—the “father of neuroscience,” Santiago Ramón y Cajal, talked about “neuronal plasticity” in the early 1900s (Fuchs & Flügge, 2014). He recognized that, in contrast to current belief at that time, brains could indeed change after a person had reached adulthood.

Neuron.
Neuron. Image by Colin Behrens of Pixabay.

In the 1960s, it was discovered that neurons could “reorganize” after a traumatic event. Further research found that stress can change not only the functions but also the structure of the brain itself (Fuchs & Flügge, 2014).

In the late 1990s, researchers found that stress can actually kill brain cells—although these conclusions are still not completely certain.

For many decades, it was thought that the brain was a “nonrenewable organ,” that brain cells are bestowed in a finite amount and they slowly die as we age, whether we attempt to keep them around or not. As Ramón y Cajal said, “in adult centers, the nerve paths are something fixed, ended, immutable. Everything may die, nothing may be regenerated” (as cited in Fuchs & Flügge, 2014).

This research found that there are other ways for brain cells to die, other ways for them to adapt and reconnect, and perhaps even ways for them to regrow or replenish. This is what’s known as “neurogenesis.”

Neuroplasticity vs. Neurogenesis

Although related, neuroplasticity and neurogenesis are two different concepts.

Neuroplasticity is the ability of the brain to form new connections and pathways and change how its circuits are wired; neurogenesis is the even more amazing ability of the brain to grow new neurons (Bergland, 2017).

You can see how neurogenesis is a more exciting concept. It’s one thing to work with what we already have, but the potential to actually replace neurons that have died may open up new frontiers in the treatment and prevention of dementia, recovery from traumatic brain injuries, and other areas we probably haven’t even thought of.

 

The Theory and Principles of Neuroplasticity

Before we get too ahead of ourselves, let’s take a moment to look at the theory and principles underpinning neuroplasticity.

First, we should note that, although we have a fairly succinct definition of neuroplasticity above, the reality is a bit less well-defined. Neuroplasticity experts Christopher A. Shaw and Jill C. McEachern describe it this way:

“While many neuroscientists use the word neuroplasticity as an umbrella term, it means different things to researchers in different subfields… In brief, a mutually agreed upon framework does not appear to exist” (2001).

Shaw and McEachern write that there are two main perspectives on neuroplasticity:

  1. Neuroplasticity is one fundamental process that describes any change in final neural activity or behavioral response, or;
  2. Neuroplasticity is an umbrella term for a vast collection of different brain change and adaptation phenomena.

 

The first perspective lends itself to a single theory of neuroplasticity with some basic principles, and that research on the subject would contribute to a single, all-inclusive framework of neuroplasticity. The second perspective would require numerous different frameworks and systems to understand each phenomenon.

Unfortunately, there is still no unifying theory of neuroplasticity that I can lay out in simple terms here. All I can say with certainty is that this is still a young field and new findings are popping up every day.

What we do know right now is that there are two main types of neuroplasticity:

  • Structural neuroplasticity, in which the strength of the connections between neurons (or synapses) changes.
  • Functional neuroplasticity, which describes the permanent changes in synapses due to learning and development (Demarin, Morović, & Béne, 2014).

 

Both types have exciting potential, but structural neuroplasticity is probably the one that is more attended to at the moment; we already know that some functions can be rerouted, relearned, and re-established in the brain, but changes to the actual structure of the brain are where many of the exciting possibilities lie.

 

Neuroplasticity and Psychology

The Theory and Principles of Neuroplasticity

These new lines of research are exciting for neuroscientists, biologists, and chemists, but they are also exciting for psychologists. In addition to changes in the way the brain works and functional adaptations, neuroplasticity offers potential avenues for psychological change as well.

As Christopher Bergland (2017) notes,

“One could speculate that this process opens up the possibility to reinvent yourself and move away from the status quo or to overcome past traumatic events that evoke anxiety and stress. Hardwired fear-based memories often lead to avoidance behaviors that can hold you back from living your life to the fullest.”

We already use medications and chemicals to change the way our brain works, and psychology has certainly put forth tons of effort to learn how to change the way the brain works through modifying our thought patterns. What if we really can make permanent, significant changes to our brain structure and function through simple activities that we often do in a normal day?

This is where the importance of learning comes in.

 

Neuroplasticity and Learning

The relation between neuroplasticity and learning is an easy one to surmise—when we learn, we form new pathways in the brain. Each new lesson has the potential to connect new neurons and change our brain’s default mode of operation.

Of course, not all learning is created equal—learning new facts does not necessarily take advantage of the amazing neuroplasticity of the brain, but learning a new language or a musical instrument certainly does. It is through this sort of learning that we may be able to figure out how to purposefully rewire the brain.

The extent to which we apply the brain’s near-magical abilities is also dependent on how invested we are in promoting neuroplasticity and how we approach life in general.

A Growth Mindset and Neuroplasticity

We’ve written about the growth mindset before (click here for an overview), but we didn’t really connect the topic to neuroplasticity. The connection is an important one.

The concepts mirror each other; a growth mindset is a mindset that one’s innate skills, talents, and abilities can be developed and/or improved with determination, while neuroplasticity refers to the brain’s ability to adapt and develop beyond the usual developmental period of childhood.

A person with a growth mindset believes that he or she can get smarter, better, or more skilled at something through sustained effort—which is exactly what neuroplasticity tells us. You might say that a growth mindset is simply accepting the idea of neuroplasticity on a broad level!

 

Does Neuroplasticity Change with Age?

As you might expect, neuroplasticity definitely changes with age, but it’s not as black and white as you might think.

Neuroplasticity in Kids

Children’s brains are constantly growing, developing, and changing. Each new experience prompts a change in brain structure, function, or both.

At birth, each neuron in an infant’s brain has about 7,500 connections with other neurons; by the age of 2, the brain’s neurons have more than double the number of connections in an average adult brain (Mundkur, 2005). These connections are slowly pruned away as the child grows up and starts forming their own unique patterns and connections.

There are four main types of neuroplasticity observed in children:

  1. Adaptive: changes that occur when children practice a special skill and allow the brain to adapt to functional or structural changes in the brain (like injuries);
  2. Impaired: changes occur due to genetic or acquired disorders;
  3. Excessive: the reorganization of new, maladaptive pathways that can cause disability or disorders;
  4. Plasticity that makes the brain vulnerable to injury: harmful neuronal pathways are formed that make injury more likely or more impactful (Mundkur, 2005).

 

These processes are stronger and more pronounced in young children, allowing them to recover from injury far more effectively than most adults. In children, profound cases of neuroplastic growth, recovery, and adaptation can be seen.

Neuroplasticity in Adults

This ability is not absent in adults, but it is generally observed less than in children and at lower strengths; however, the adult brain is still capable of extraordinary change.

It can restore old, lost connections and functions that have not been used in some time, enhance memory, and even enhance overall cognitive skills.

The potential is generally not as great in older adults as it is in children and young adults, but with sustained effort and a healthy lifestyle, adults are just as able to promote positive change and growth in their brains as the younger generations.

To see some of the amazing ways that neuroplasticity can affect the adult brain, read on!

 

Research and Studies on Neuroplasticity

dad playing with kid - neuroplasticity kids and adults

So what new things have we learned about neuroplasticity lately? As it turns out, quite a bit!

Here are some of the newest and most exciting developments in the field:

  1. Enriched environments (saturated with novelty, focused attention, and challenge) are critical for promoting neuroplasticity, and can provoke growth and positive adaptation long after the “critical learning period” of early childhood and young adulthood is over (Kempermann et al., 2002; Vemuri et al., 2014);
  2. “Newborn” neurons at 8 weeks old and older neurons are generally at the same level of maturation (Deshpande et al., 2013);
  3. As few as ten ~1-hour sessions of cognitive training over 5 or 6 weeks have the potential to reverse the same amount of age-related decline that has been observed in the same time period (Ball et al., 2002);
  4. Physical activity and good physical fitness can prevent or slow the normal age-related neuronal death and damage to the hippocampus, and even increase the volume of the hippocampus (Niemann et al., 2014);
  5. Intermittent fasting can promote adaptive responses in synapses (Vasconcelos et al., 2014);
  6. Chronic insomnia is associated with atrophy (neuronal death and damage) in the hippocampus, while adequate sleep may enhance neurogenesis (Joo et al., 2014).

 

This is but a small selection of the recent findings on neuroplasticity (see Shaffer, 2016 to learn more), but it highlights the enormous potential impact of harnessing the power of neuroplasticity to improve health and well-being in humans.

 

7 Benefits Neuroplasticity Has on the Brain

Building on the studies we just mentioned, there are tons of ways that neuroplasticity benefits the brain. In addition to the improvements and advantages outlined above, these are some of the other ways your brain benefits from brain adaptation:

  1. Recovery from brain events like strokes;
  2. Recovery from traumatic brain injuries;
  3. Ability to rewire functions in the brain (e.g., if an area that controls one sense is damaged, other areas may be able to pick up the slack);
  4. Losing function in one area may enhance functions in other areas (e.g., if one sense is lost, the others may become heightened);
  5. Enhanced memory abilities;
  6. Wide range of enhanced cognitive abilities;
  7. More effective learning.

 

So, how can we apply neuroplasticity and get these benefits?

 

How to Rewire Your Brain with Neuroplasticity

First, let’s get an idea of some of the ways that neuroplasticity can be applied.

A few of the methods that have been shown to enhance or boost neuroplasticity include:

  • Intermittent fasting (as noted earlier): increases synaptic adaptation, promotes neuron growth, improve overall cognitive function, and decreases the risk of neurodegenerative disease;
  • Traveling: exposes your brain to novel stimuli and new environments, opening up new pathways and activity in the brain;
  • Using mnemonic devices: memory training can enhance connectivity in the prefrontal parietal network and prevent some age-related memory loss;
  • Learning a musical instrument: may increase connectivity between brain regions and help form new neural networks;
  • Non-dominant hand exercises: can form new neural pathways and strengthen the connectivity between neurons;
  • Reading fiction: increases and enhances connectivity in the brain;
  • Expanding your vocabulary: activates the visual and auditory processes as well as memory processing;
  • Creating artwork: enhances the connectivity of the brain at rest (the “default mode network” or DMN), which can boost introspection, memory, empathy, attention, and focus;
  • Dancing: reduces the risk of Alzheimer’s and increases neural connectivity;
  • Sleeping: encourages learning retention through the growth of the dendritic spines that act as connections between neurons and help transfer information across cells (Nguyen, 2016).

 

For references on each of these methods, see Thai Nguyen’s piece here.

 

Healing the Brain with Neuroplasticity After Trauma

Research on neuroplasticity has gained in leaps and bounds from observing changes in the brains of those who suffered serious trauma. Scientists noticed that some patients with severe damage to the brain were able to recover to an amazing degree, given the extent of the damage, and wondered how this was possible; as we now know, neuroplasticity is what allows this recovery to happen.

According to researchers Su, Veeravagu, and Grant (2016), there are three phases of neuroplasticity after trauma:

  1. Immediately after the injury, neurons begin to die and cortical inhibitory pathways are decreased; this phase lasts one to two days, and may uncover secondary neural networks that have never been used or have been rarely used.
  2. After a few days, the activity of these cortical pathways changes from inhibitory to excitatory and new synapses are formed; both neurons and other cells are recruited to replace the damaged or dead cells and facilitate healing.
  3. After a few weeks, new synapses continue to appear and the “remodeling” of the brain is in full swing—this is the time when rehabilitation and therapy can help the brain to learn some helpful new pathways.

girl crying - neuroplasticity trauma

There are many pharmacological treatments currently in development and testing that aim to help recovery through encouraging neuroplasticity, in addition to therapies involving stem cells, modifying gene expression and cellular proliferation, regulating inflammatory reactions, and recruiting immune cells to stop the damage (Su, Veeravagu, & Grant, 2016).

Although injury to the brain is a difficult thing to recover from, it is paradoxically one of the best times to take advantage of the brain’s neuroplastic abilities, because post-injury or trauma is when the brain is most capable of making significant changes, reorganizing, and recovering (Su, Veeravagu, & Grant, 2016).

 

Neuroplasticity Rehabilitation for Stroke Recovery

Neuroplasticity has been observed quite often in those recovering from strokes. Strokes often leave patients with brain damage, ranging from moderate (e.g., some facial muscular impairment) to severe (e.g., serious cognitive impairments, memory problems); however, we have also seen amazing recovery from stroke patients.

According to the experts at stroke-rehab.com, the best way to encourage neuroplasticity in stroke recovery is to use two key methods:

  1. Task repetition;
  2. Task-specific practice.

 

In other words, learning a new skill or activity (or re-learning an old one) through specific, regular practice can result in significant changes in the brain. You may not be able to learn anything with repetition and specific practice, but you can certainly learn a lot—and improvements in one area can often spill over into improvements in other abilities and skills.

 

How Can Neuroplasticity Help with Depression?

The connection between neuroplasticity and depression is a good news/bad news one.

The bad news is that, when it comes to psychiatric disorders, there’s a sort of negative neuroplasticity; depression can cause damage to the brain, encouraging unhealthy and maladaptive pathways and discouraging healthy and adaptive ones (Hellerstein, 2011).

The good news is that some treatments for depression seem to be able to halt the damage and perhaps even reverse it. The even better news is that research on neuroplasticity has shown us that “your day-to-day behaviors can have measurable effects on brain structure and function,” which can offer healing and recovery from psychiatric disorders (Hellerstein, 2011).

It may not be easy and it might take sustained effort, but we have the ability to “remodel” our brains at any age in ways that can help us to function better.

 

Using Neuroplasticity to Help with Anxiety

The same principles apply to manage and treat anxiety disorders—our brains are also perfectly capable of rewiring and remodeling to improve our ability to manage anxiety.

However, as life coach and clinician Ian Cleary (2015) says:

“Any brain changes are at the expense of other changes. The development of these parts of our brain that effortlessly trigger anxiety, it is at the detriment of the ones that aid calmness & confidence… it is not enough to just stop anxiety in any given moment which is often people’s focus. The anxiety wiring is still there and waiting to be triggered. We need to create competitive wiring. We need to create specific wiring of what we want to achieve which is ‘competitive wiring’ to the problem. Without this we loop endlessly in anxiety with no neural pathway to take us forward.”

Basically, neuroplasticity can be applied to help you manage, treat, and perhaps even “cure” anxiety, but it takes some time and effort! These more permanent brain changes can be achieved through adapting and changing thought patterns, through recall and memory patterning, breathing exercises, eye patterning, modifying postural habits, increasing body awareness, and targeting sensory perception (Cleary, 2015).

8 Neuroplasticity Exercises for Anxiety and Depression

There aren’t many neuroplasticity exercises designed specifically for depression, but that doesn’t mean you can’t do anything about it.

All of these activities and exercises—many of which you’ll recognize from more traditional advice on managing depression—have been found to improve neuroplasticity and may be helpful for dealing with depression:

Learning a New Language
Learning a New Language. Image by Gerd Altmann of Pixabay.

 

  1. Memory tasks and games;
  2. Learning to juggle;
  3. Learning to play a new instrument;
  4. Learning a new language;
  5. Yoga;
  6. Mild to moderate regular exercise;
  7. Challenging brain activities like crosswords or sudoku;
  8. Learning a new subject—especially a large, complex subject in a short period of time (Hellerstein, 2011).

 

Chronic Pain and Neuroplasticity

Neuroplasticity can also play an important role in helping people manage and treat chronic pain. After all, pain itself is experienced as a set or sequence of neuronal firings—if we can change the way our brains are wired, what’s to stop us from changing the experience of pain?

A recent study on the subject found that there are at least four methods that can help your brain adapt and manage chronic pain:

  1. Transcranial direct current stimulation (electrodes implanted in certain areas of the brain to stimulate certain responses);
  2. Transcranial magnetic stimulation (non-invasive magnetic stimulation of the brain via a “wand” to engage specific areas);
  3. Intermittent fasting (periods of fasting followed by periods of normal food intake);
  4. Glucose administration (taking glucose supplements to replace what we lose due to normal aging; (Sibille, Fartsch, Reddy, Fillingim, & Keil, 2016).

 

In addition to these more intensive treatments, there are many things you can do to apply the principles of neuroplasticity to your experience of pain, and the good news is that most of them are things that we should all do to become more healthy anyway!

6 Neuroplasticity Exercises for Treating Chronic Pain

These six practices and exercises have proven useful for dealing with chronic pain, and they all have the ability to affect how our brain wiring receives and translates the message of pain:

  1. Regular exercise;
  2. Healthy eating;
  3. Quitting smoking;
  4. Keeping your mind active, engaged, and challenged;
  5. Relaxation techniques to keep stress at bay;
  6. Mindfulness meditation (Irving, 2016).

 

Each of these activities has the potential to rewire and retrain your brain to react differently to pain.

 

Neuroplasticity Therapy for ADHD, OCD, and Autism

The methods of using neuroplasticity to treat ADHD, OCD, and autism largely mirror the methods we have already covered. There are games, activities, and programs designed around the principles of neuroplasticity to help people and children with a wide range of issues and impairments.

However, they all come down to the same general themes: learning new things, being open to new experiences and new activities, consciously adapting and modifying your thought patterns, and using science-backed techniques to challenge yourself.

To learn more about how neuroplasticity can benefit children with ADHD, click here for a description of the Atentiv System.

To get specific information on how neuroplasticity therapy can be applied to OCD, click here.

 

The Role of Mindfulness in Neuroplasticity

Proponents of mindfulness meditation have long thought that meditation can actually cause physical changes in the brain; as it turns out, they were right! Mindfulness meditation can, in fact, change the brain through neuroplasticity.

Jessica Cassity (n.d.) writes this about mindfulness meditation and neuroplasticity:

“With meditation, your brain is effectively being rewired: As your feelings and thoughts morph toward a more pleasant outlook your brain is also transforming, making this way of thought more of a default… The more your brain changes from meditation, the more you react to everyday life with that same sense of calm, compassion, and awareness.”

The more mindful we become and the more we meditate, the more our brain adapts to this state as our default state. This is why mindfulness meditation has such a big impact on regular practitioners even outside of their dedicated practice time; they have taught their brain to be mindful, calm, at peace, and centered all throughout the day, not just when they are actively meditating.

Using Meditation to Promote Neuroplasticity

To learn more about the connection between meditation and neuroplasticity and to take advantage of the neuroplasticity that mindfulness meditation brings, check out this PDF from Harvard Health.

In it, you’ll learn about some recent studies on the subject and find guided meditations, yoga sequences, and other exercises that can help you gain the benefits outlined.

You can also watch a great TED Talk from Sara Lazar on how meditation can change the brain here:

Several areas of the brain actually become larger after meditation, such as the hippocampus and the fight-or-flight response system in the amygdala. The science behind meditation’s effect on the brain is enough to invite you, our reader, to take three cleansing breaths before continuing with this article!

 

How Music Changes the Brain

Listening to music is not only an enjoyable way to pass the time or influence our mood and energy level; it may also be an impactful way to make structural and functional changes to the brain.

A 2010 article reviewing several relevant studies found that those who trained as musicians displayed several differences in the structure and connectivity of their brains compared to non-musicians, including:

  • The anterior portion of the corpus callosum (the thick part of the brain that connects the two hemispheres) was larger in musicians, especially those who began their training at a young age;
  • The right motor cortex was larger in right-handed musicians than right-handed non-musicians, especially for those who began their musical training at a young age;
  • The volume of the cerebellum in male musicians is larger than in male non-musicians;
  • The volume of the grey matter in motor, auditory, and visuospatial cerebral areas is larger in musicians than non-musicians;
  • Musicians have more structured right posterior internal capsules than non-musicians, especially for those who began practicing their craft early on;
  • Musicians have higher gray and white matter density in the left primary sensory-motor cortex and right cerebellum, as well as higher white matter integrity in the right posterior internal capsule;
  • Pianists have increased cortical representation of piano tones;
  • Musicians have enhanced responses to temporal novelty in the anterior left hippocampus;
  • Musicians have earlier and larger auditory and audiovisual responses to speech and music stimuli (Rodrigues, Loureiro, & Caramelli, 2010).

 

If none of this makes sense to you, don’t worry—you’re not alone! I’ll let the authors describe what all these findings suggest:

“…[S]everal forms of intensive training have an impact on brain and cognition, but it is possible that musical training has specific effects that other forms of training do not have, or even produces a range of different effects… [The] cognitive enhancement effects of musical training, the result of neuroplastic processes, might be due to a combination of skills required by music study, such as decoding visual information into motor activity, memorizing extended passages of music, learning music structures and rules, learning to make fine auditory spectral and temporal discriminations and learning to perform skilled bimanual finger movements.” (Rodrigues, Loureiro, & Caramelli, 2010, p. 284).

Basically, findings on how music affects the brain indicate that musical training—and perhaps even habitual engagement with listening to and appreciating music—can help the brain enhance its natural neuroplasticity and improve countless abilities and cognitive skills.

 

Do Online Games and Apps Really Work?

You’ve no doubt heard of the many games and apps designed to harness the power of neuroplasticity and apply it to improve your memory, processing speed, and problem-solving skills. A few of them even purport to protect you against developing dementia!

Unfortunately, on the whole, these games and apps are not grounded in relevant science. In fact, a large group of scientists has this to say about the brain game trend:

“In summary: We object to the claim that brain games offer consumers a scientifically grounded avenue to reduce or reverse cognitive decline when there is no compelling scientific evidence to date that they do. The promise of a magic bullet detracts from the best evidence to date, which is that cognitive health in old age reflects the long-term effects of healthy, engaged lifestyles” (“A Consensus on the Brain Training Industry from the Scientific Community”, 2014).

In other words, there may not be any harm in playing these games (except for a slightly lighter wallet), but engaging in healthy habits and regularly exercising, learning, and trying new things is the much more evidence-backed way to go.

 

The Sentis Brain Animation Series

This fascinating, engaging video series on the brain and its amazing abilities is a great way to learn more about this topic. If any of the brain terms and areas in this piece left you scratching your head, you’re not alone—but this series can help you learn more about the puzzle that is the brain!

In particular, check out this video on neuroplasticity. It’s only 2 minutes long, but it’s a great overview.

Those billions of pathways in your brain light up every time you “think, feel, or do something.” So if you want new habits to become ingrained in your daily life, then it is a matter of building and strengthening certain pathways while not reinforcing others.

If you watched the short clip above, you’ll find yourself with their series, and it is rich with helpful information on how our brains work.

 

TED Talks and YouTube Videos on Neuroplasticity

For a quick lesson on neuroplasticity or to learn more, these TED talks and brief lectures on the subject might just hit the spot:

  • “After Watching This, Your Brain Will Not Be the Same” by Lara Boyd

 

  • “Growing Evidence of Brain Plasticity” by Michael Merzenich

 

  • “How to Increase Neuroplasticity (6 Neuroplasticity Exercises)” by Siim Land

 

  • “The Most Important Lesson from 83,000 Brain Scans” by Daniel Amen

 

  • “Make Your Brain Smarter: It’s Not What You Think” by Sandra Chapman

 

  • “Thinking to Doing to Being” by Dr. Joe Dispenza

 

 

9 Recommended Books on Neuroplasticity

If you’re interested in learning more and you have more than 20 minutes or so to dedicate to it, you might enjoy one of these books on the subject:

  1. The Brain’s Way of Healing: Remarkable Discoveries and Recoveries from the Frontiers of Neuroplasticity by Norman Doidge (Amazon)
  2. Neuroplasticity (MIT Press Essential Knowledge Series) by Moheb Costandi (Amazon)
  3. Switch on Your Brain: The Key to Peak Happiness, Thinking, and Health by Dr. Caroline Leaf (Amazon)
  4. The Power of Neuroplasticity by Shad Helmstetter (Amazon)
  5. The Stress-Proof Brain: Master Your Emotional Response to Stress Using Mindfulness & Neuroplasticity by Melanie Greenberg (Amazon)
  6. The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science by Norman Doidge (Amazon)
  7. My Stroke of Insight: A Brain Scientist’s Personal Journey by Jill Bolte Taylor (Amazon)
  8. The Mind and the Brain: Neuroplasticity and the Power of Mental Force by Jeffrey M. Schwartz and Sharon Begley (Amazon)
  9. Breaking the Habit of Being Yourself: How to Lose Your Mind and Create a New One by Dr. Joe Dispenza (Amazon)

 

9 Quotes on Neuroplasticity

Before you go, check out these 9 interesting, engaging, and sometimes entertaining quotes about neuroplasticity.

Andrew Weil:

“Among other things, neuroplasticity means that emotions such as happiness and compassion can be cultivated in much the same way that a person can learn through repetition to play golf and basketball or master a musical instrument, and that such practice changes the activity and physical aspects of specific brain areas.” 

Elizabeth Thornton:

“Because of the power of neuroplasticity, you can, in fact, reframe your world and rewire your brain so that you are more objective. You have the power to see things as they are so that you can respond thoughtfully, deliberately, and effectively to everything you experience.” 

Santiago Ramón y Cajal:

“Any man could, if he were so inclined, be the sculptor of his own brain.” 

Craig Krishna:

“Meditation invokes that which is known in neuroscience as neuroplasticity; which is the loosening of the old nerve cells or hardwiring in the brain, to make space for the new to emerge.” 

Norman Doidge:

“Everything having to do with human training and education has to be re-examined in light of neuroplasticity.”

Donald O. Hebb:

“Neurons that fire together wire together.” 

Douglas Rushkoff:

“Brains are tricky and adaptable organs. For all the ‘neuroplasticity’ allowing our brains to reconfigure themselves to the biases of our computers, we are just as neuroplastic in our ability to eventually recover and adapt.” 

Michael S. Gazzaniga:

“Our brains renew themselves throughout life to an extent previously thought not possible.” 

Susannah Cahalan:

“Our minds have the incredible capacity to both alter the strength of connections among neurons, essentially rewiring them, and create entirely new pathways. (It makes a computer, which cannot create new hardware when its system crashes, seem fixed and helpless).” 

 

A Take-Home Message

I hope you’ve enjoyed this very brief journey through the subject of neuroplasticity! As you saw on this quick journey, it is a very large and complex subject, with new discoveries every day—often challenging what we thought we knew about the brain.

If you’re interested in learning more, please check out the books, videos, and other resources noted above. I think the work on neuroplasticity is, in some ways, just beginning, so it’s a great time for you to engage.

What are your thoughts on neuroplasticity? Do you have an amazing recovery to share? How do you try to “rewire” your brain? As always, let us know in the comments section below.

Thanks for reading!

  • “A Consensus on the Brain Training Industry from the Scientific Community.” (2014). Max Planck Institute for Human Development and Stanford Center on Longevity. Retrieved from http://longevity3.stanford.edu/blog/2014/10/15/the-consensus-on-the-brain-training-industry-from-the-scientific-community/
  • Ball, K. K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Mariske, M., …, & Willis, S. L. (2002). JAMA 288, 2271-2281. PMID: 12425704
  • Bergland, C. (2017). How do neuroplasticity and neurogenesis rewire your brain? Psychology Today. Retrieved from https://www.psychologytoday.com/us/blog/the-athletes-way/201702/how-do-neuroplasticity-and-neurogenesis-rewire-your-brain
  • Berlucchi, G., & Buchtel, H. A. (2009). Neuronal plasticity: Historical roots and evolution of meaning. Experimental Brain Research, 192(3), 307-319. doi:10.1007/s00221-008-1611-6
  • Campbell, C. (2009). What is neuroplasticity? BrainLine. Retrieved from https://www.brainline.org/author/celeste-campbell/qa/what-neuroplasticity
  • Cassity, J. (n.d.). The power of mindfulness: Reshape your brain for calm and compassion. Happify. Retrieved from https://www.happify.com/hd/the-power-of-mindfulness/
  • Cleary, I. (2015). Depression, anxiety and other conditions. Ian Cleary: Advanced Lightning Process Practitioner. Retrieved from http://iancleary.com/neuroplasticity-and-anxiety/
  • Demarin, V., Morović, S., & Béne, R. (2014). Neuroplasticity. Periodicum Biologorium, 116, 209-211. ISSN 0031-5362
  • Desphande, A., Bergami, M., Ghanem, A., Conzelmann, K. K., Lepier, A., Gӧtz, M., & Berninger, B. (2013). Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America 110, 12. doi:10.1073/pnas.1218991110
  • Fuchs, E., & Flügge, G. (2014). Adult neuroplasticity: More than 40 years of research. Neural Plasticity, 2014. doi:10.1155/2014/541870
  • Hellerstein, D. (2011). Neuroplasticity and depression. Psychology Today. Retrieved from https://www.psychologytoday.com/us/blog/heal-your-brain/201107/neuroplasticity-and-depression
  • Irving, G. A. (2016). Chronic pain and neuroplasticity. Swedish Medical Center. Retrieved from https://www.swedish.org/blog/2016/03/neuroplasticity
  • Joo, E. Y., Kim, H., Suh, S., & Hong, S. B. (2014). Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: Magnetic resonance imaging morphometry. Sleep, 37, 1189-1198. doi:10.5665/sleep.3836
  • Kempermann, G., Gast, D., & Gage, F. H. (2002). Neuroplasticity in old age: Sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Annals of Neurology, 52, 135-143. doi:10.1002/ana.10262
  • Mundkur, N. (2005). Neuroplasticity in children. Indian Journal of Pediatrics, 72, 855-857. doi:10.1007/BF02731115
  • Neimann, C., Godde, B., & Voelcker-Rehage, C. (2014). Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Frontiers in Aging Neuroscience, 6, 170. doi:10.3389/fnagi.2014.00170
  • Nguyen, T. (2016). 10 proven ways to grow your brain: Neurogenesis and neuroplasticity. HuffPost Blog. Retrieved from https://www.huffingtonpost.com/thai-nguyen/10-proven-ways-to-grow-yo_b_10374730.html
  • Rodrigues, A. C., Loureiro, M. A., & Caramelli, P. (2010). Musical training, neuroplasticity and cognition. Dementia & Neuropsychologia, 4, 277-286. doi:10.1590/S1980-57642010DN40400005
  • Shaffer, J. (2016). Neuroplasticity and clinical practice: Building brain power for health. Frontiers in Psychology, 7, 1118. doi:10.3389/fpsyg.2016.01118
  • Shaw, C. A., & McEachern, J. C. (2001). Toward a theory of neuroplasticity. Philadelphia, PA, US: Psychology Press.
  • Sibille, K. T., Bartsch, F., Reddy, D., Fillingim, R. B., & Keil, A. (2016). Increasing neuroplasticity to bolster chronic pain treatment: A role for intermittent fasting and glucose administration? Journal of Pain, 17, 275-281. doi:10.1016/j.jpain.2015.11.002
  • Smith, G. S. (2013). Aging and neuroplasticity. Dialogues in Clinical Neuroscience, 15, 3-5. PMID: 23576885
  • Stroke-rehab.com
  • Su, Y. S., Veeravagu, A., & Grant, G. (2016). Chapter 8: Neuroplasticity after traumatic brain injury. In D. Laskowitz and G. Grant (Eds.) Translational research in traumatic brain injury. Boca Raton, FL, US: CRC Press/Taylor and Francis Group.
  • Taupin, P. (2006). Adult neurogenesis and neuroplasticity. Restorative Neurology and Neuroscience, 24, 9-15.
  • Vasconcelos, A. R., Yshii, L. M., Viel, T. A., Buck, H. S., Mattson, M. P., Scavone, C., & Kawamoto, E. M. (2014). Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. Journal of Neuroinflammation, 11, 85-98. doi:10.1186/1742-2094-11-85
  • Vemuri, P., Lesnick, T. G., Przybelski, S. A., Machulda, M., Knopman, D. S., Mielke, M. M., …, & Jack Jr., C. R. (2014). Association of lifetime intellectual enrichment with cognitive decline in the older population. JAMA Neurology, 71, 1017-1024. doi:10.1001/jamaneurol.2014.963

About the Author

Courtney Ackerman is a graduate of the positive organizational psychology and evaluation program at Claremont Graduate University. She is currently working as a researcher for the State of California and her professional interests include survey research, well-being in the workplace, and compassion. When she’s not gleefully crafting survey reminders, she loves spending time with her dogs, visiting wine country, and curling up in front of the fireplace with a good book or video game.

Comments

  1. Kate Hanley

    Wonderful article- interesting, comprehensive and motivating!

    Reply
  2. Dr.Vasugi Sithirasenan

    A very interesting and informative article. I am currently writing a paper on ” Thirukkural, as the voice of the multicultural world”. Thirukkural is a Tamil ancient literature full of wisdom. It is a gift from the past to present to build the future. It will be interesting to know the effects it has on new learners. Hopefully the morally rich couplets can rewire neurons in human brains and make them calm , compassionate and caring.Paving the way to a peaceful , harmonious and happy world.

    Reply
Load More Comments

Leave a Reply

Your email address will not be published. Required fields are marked *